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4. Continuous functions

T: In general, function can be as bizarre as the Dirichlet function in Example 3.
In this section, we shall restrict our discussion to a certain regular function, so
called continuous functions. Continuity is a geometric concept when we view a
function f(z) as a curve (z,y = f(z)) in the xy plan. What can you say about
the continuity of y = f(x) as described in Figure 167

....... 3 1! 1! 1! 1! : Ll ’
_______ P EEEEEERr AN
asanl /]
s BP;
iEEmmr PUNEEEE
A%
\ Vi
\'\
\. /
/ \\\_‘" #
-2 = 0 1 2

Fi1G 16. y = f(z) is defined [—2,2] and is continuous everywhere except at x = 1

S: I am not sure how to describe the continuity in a precisely way. But 1
can visualize that it is continuous everywhere except at x = 1, where there is a
jump.

T: A good starting observation. At x = 1, a small change, denoted by Ax :=
x — 1, in z coordinate might lead to significant change, denoted by Ay :=
f(14+ Az) — f(1), in y coordinate on the curve.

S: OK. So we can say that at any other point z¢ # 1 in the domain Dy =
[-2,2], y = f(x) is continuous because a small change Az = z — ¢ leads to a
small change Ay := f(xo + Azx) — f(z0).

T: But how to define a change is small.

S: Ooh, I should use the word “arbitrary close”. How about f(x) approaches
arbitrarily close to f(zq) as z is sufficiently close to z.

T: That is the correct language in English. Let me use math language to
clarify the continuity of f(z) at xp and then explain it. Notice that it is one of
the most important concepts in calculus, if not THE one.

Definition 4.1. A function f(zx) is called to be continuous at xq if for any
given € > 0, there exists a 6 > 0 such that

|f(z) = f(zo)| <€, forallxe€ (xg—d,x0+9). (4.1)

If f(x) is continuous at xqg, we write

lim f(x) = f(xo)

T—xQ
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Remark 9. 1. Recall that for sequence A = {an}nzl to converge to some
value 1, a, is requested to approaches to I as n increases. Similarly, for a
function f to be continuous at a given point xy in its domain, f(x) need
approach to f(xo) as x approaches to xg.

2. Similar to the limit of a sequence, there is no restriction on the selection
of € > 0 to reflect the requirement that f(x) can be arbitrarily close to
f(zo).

3. For a (arbitrarily) given €, the continuity of f at xy demands the existence
of 6 with Condition (4.1). Notice we do not care much how close f(x) is
to f(xo) if x is outside of the interval (xg —d, 29+ 0). i.e. f(x) is required
to be € (arbitrarily) close to f(xo) if x is § (sufficient) close to xg.

4. For a given ¢, the condition (4.1) need to be satisfied for all points in an
identified § neighborhood. If one neighborhood O(xy,d) meets the condition
(4.1), any smaller small neighborhood like O(xq,d/2) certainly works as
well. The value of § is not important. What matters is the existence of
such 0.

Let us apply it to our simple function y = 2.

Example 6. Discuss the continuity of f(x) = x? at x = 2 by definition.
We know by intuition lim, o 2? = f(2) = 4. To show it by definition, for
any € > 0, we need to find 6 such that

|2 — 2% <€, Vre(2-6,2+9). (4.2)

For the given ¢, we can see that |2% — 22| = |(z — 2)(x +2)| can be smaller than
€ if |z + 2| is bounded and |(x — 2)| sufficient small. As the first step to estimate
|72 — 22|, we need an upper bound of |z + 2|. Since we can freely select &, we
first require

§<1, (4.3)

which implies 1 < x < 3 and therefore |x + 2| < 5. Under the assumption (4.3),
|72 — 22| < 5|z — 1|. Now Inequity (4.2) holds for any § such that

0 < %e. (4.4)

It is clear now any & that meets the conditions (4.3) and (4.4) should work for
our purpose. One can simply pick

5 = min{1, %e}. (4.5)

i.e. delta is chosen to be the minimum of 1 and %6. To verify, we have

(@* =22)] = |(z—2)(z +2)|
5/(x —2)|, since|lr+2| <5 dueto|r—1<d<1
< bxd<eg, smce|x—2|<5§§

A
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S: It looks that we depend on some algebra to do some analysis to find a
suitable 4.

T: Finding § for a given € need some algebraic skills since the value of e
can be any positive number. But we don’t need start from definition to show
the continuity in practice since there are effective rules for us to justify the
continuity of given functions.

Let us prove one of those rules to get familiar with € — 0 language.

Proposition 4.2. Let f(x) and g(x) be both continuous at xg, then h(x) :=
f(z) + g(x) is also continuous.

Proof. As always, we start with any given ¢ > 0 and look for § > 0 such that
[h(x) — h(xo)| < e, Vo € (xg — 0,0 + 9). (4.6)

Since f(z) is continuous at xg, there exists J1 associated to the given positive

number ¢y := %6 such that

|f(z) — f(zo)] <€0:%€, V€ (xo — 01,20 + 01). (4.7

Similar arguments applying to g(z), there exists J2 associated to the given pos-

itive number €9 := %e such that

1

l9(2) = g(z0)| <o = g5e, Vo € (o — 02,70 + b2). (4.8)

We show that
0= min{51, 52} (49)
meet the requirement (4.6). In fact, for z € (g — §, 29 + 9)
|(h(x) = (o)) |(f(z) = f(z0)) + (9(x) — g(20))]

|f (@) = fzo)| + lg(x) — g(0)]
€0 since |z —xo| < § < d; and (4.7)
€ since |z — x| < d < Jy and (4.8)

+ A IA

€

|

S: The way of finding ¢ is interesting. A pure logic proof for the existence of
some desired quantity.

T: Right. For the given ¢, the existence of § is based on the existence d; and
02 whose existence is due to the fact that f and g are continuous at xg.

The clarification of the continuity in Definition 4.1 makes calcu-
lus build on a solid foundation so we can effectively handle general
functions, a task that is hard to achieve by depending on intuitive
geometric arguments.

Let us look another interesting example to get familiar with the concept.
Remember that any ration number can be uniquely expressed as g such that

there is no common factor of p and g except 1.
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Example 7. Discuss the continuity of the following function defined over the
range [0, 1].

o) = {

Remind you that rational numbers and irrational numbers are dense in the
real number set R, i.e. we can always find a rational number or an irrational
number over any interval (a,b). If xo = & is a rational number in [0,1], we

Lo ifx =2 is a rational number over [0,1] ;
q q
0

4.10
. if x is a irrational number over [0, 1]. (4.10)

claim that there is no § that meets for Condition 4.1 for e = 2—1q. In fact, for any
0, we can always find an irrational number x € (xg — d,x0 + 9), but

1 1 1
|f($)_f(x0)|:|0_§|:5>€:ZJ'

As such, we conclude that f(x) is not continuous at any rational number. Now,
for an irrational xg, for any given € > 0, there are only finite rational numbers
0 <2 <1 such that f(£) = L'> ¢. we choose § such that (zog — 0,70 + &) does
not contain any of those numbers and therefore

Iﬂ@—me—{

% <€ ifx € (xg— 0,19+ 0) is rational number g;
0<e, ifx€(xg— 90,20+ 0) is airrational number .

implies that f(x) is continuous at any irrational number.

S: The function is what you called bizarre function. The result is interesting,
but do we really need such function in real application?

T: there are reasons why we study such a blizzard function. First of all,
the example shows that it does not need to be “look continuous” for
a function to be continuous. Secondly, even if we are mainly interested in
regular functions, those bizarre ones provide some counterexamples to tell you
the limit of your theory.

f(x) in Figure 16 is so called right continuous at 1 although it is not contin-
uous. Let us extend the continuity concept slightly as follows.

Definition 4.3. A function f(x) is called to be right continuous at z¢ if for
any given € > 0, there exists a § > 0 such that

|f(z) — f(xo)| <€, forall x € [xg, 0+ 0) (4.11)
If f(x) is right continuous at xo, we write

lim_f(x) = f(x0)

IE—>I0

Similarly, f(x) is called to be left continuous at xq if for any given ¢ > 0,
there exists a 6 > 0 such that

|f(z) — f(zo)| <€, forallx € (xo— 0, x0) (4.12)
If f(x) is left continuous at xg, we write

lim_f(z) = f(xo)

Cl)*)il)o
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Assumption 4.1. For the rest of the section, f(x) is assumed to be continuous
at any point x € (a,b), left continuous at b and right continuous at a. We simply
say that f(x) is continuous over [a,b].

For such function, we have

Theorem 4.4. (Intermediate Value Theorem) If f(x) is continuous over [a,b],
then for any value ¢ between f(a) and f(b), there exists xo € [a,b] such that

f(zo) =c. (4.13)

Proof. Let g(z) := f(x) — ¢. We need to show that there is a point zy such
that g(zp) = 0. To search such z(, we split evenly the interval [a,b] to two
intervals and can take one of them, label as [a1,b;], such that g(a1)g(b1) < 0
since g(a)g(b) < 0 2°. Repeat the same process and we obtain a interval sequence
such that forn =1,2, ...

[Cl,n+1, bn+1] - [an, bn], (414)
by, —an, = 2%(17 —a), (4.15)
g(an)g(b,) < 0. (4.16)

By (4.14) and (4.15), there exists a unique x¢ that lies in all interval [a,,, b,] %°.

We claim that f(z) = 0. Otherwise, assuming f(zg) > 0 27, by the continuity
of f(x) at xg, taking e = ﬂ;—o) 28 there is a § > 0 such that

F@) ) flmg) < e = %%)

B) IG(Q?()*(;,I()—F(;),

which implies f(z) > @ > 0 for all x € O(xp,9), i.e. f(z) remains same
sign in the neighborhood. Since [a,, b,] shrinks to xg, one can find [a,,b,] C
(xo — 0,20 + &) and therefore g(a,)g(b,) > 0, which is contradictory to (4.16).
As such, f(z¢) =0. O

S: Interesting. I guess it is so called analysis you mentioned before. It starts
searching the desired value zy by using a sequence of intervals [a,,b,] that

25due to c is between f(a) and f(b)

26 The following property of the set R of the real numbers is accepted for grant as an axiom
and the theory of calculus is built on it. If R is interpreted as a line, the axiom basically says
that there is no hole in the line.

Axiom 4.1. For a sequence of close intervals {[an,bn]p>1} such that

[@n+1,bnt1] C [an,bn], and lim b, —an =0
n—oo

then there exists a unique number ¢ such that c lies in all intervals [an, bn].

Notice that the assumption of the close interval is necessary. It is easy to see that the
intersection of all (0, %) for n > 1 is empty.

27Same argument can be applied to the case f(zg) < 0.

28¢ = —f(20)/2 if we assume f(zg) <0
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shrink to it; and then shows f(xg) = 0 by contradiction: for if otherwise, f(x)
has to keep the same sign in a neighborhood of zy since f(z) is continuous,
which is contradictory to the fact f(a,) and f(b,) always have opposite signs
and a, and b, fall in any given neighborhood of x for sufficient large n.

T: Right. Analysis enables us to build a solid foundation of calculus. Let
us apply similar analysis to prove some other important results for general
continuous functions on [a, b].

Theorem 4.5. If f(x) is continuous over [a,b], then

1. f(x) is bounded, i.e. there exists M > 0 such that |f(x)] < M for any
x € [a,b].

2. there exists xg € [a,b] such that f(xo) = inf{f(z), =z € [a,b]}.

3. there exists x1 € [a,b] such that f(x1) = sup{f(z), =z € [a,b]}.

where, for any set A, inf A and sup A are defined in Definition 1.1.

S: Can you review the differences between the min(max) and inf (sup) of a
set A7 somehow I am still not comfortable with sup A and inf A.

T: OK. take sup A for a general set A, it is defined as the least upper bound
of A 2 and is equal to max A if the maximum value of A exists. Notice that
the maximum value is required to be in A by definition and exist always if A
is a finite set. On the other hand, if A contains infinite many members, the
maximum value of a set might not exist, which leads to the concept sup A.
Think about the set defined by all values of following function:

ro={ 5 10

if x € [5,

S: I see. The set f[0,1] is [0,3), no member in it can be treated as the
maximum value since % is not included. % is the sup, but not as the maximum
value.

T: Correct. Theorem 4.5 actually says that the sup f[a, ] and inf f[a, b] are
actually the maximum value and minimum value of f if it is continuous. The
conclusion is not true in general as shown in about example, which is not con-
tinuous at # = L. Let us prove the theorem to get familiar with the analytic

2
tricks we applied before.

Proof. 1. If M does not exists, then for any natural number n, n is not a
upper bound and hence there is exist z,, € [a,b] such that |f(z,)| > n. As
such, we obtain a sequence x,, € [a, ] that meet the condition

If(zn)| >n, n=12,.... (4.17)

We apply the same half-interval-split method in the proof of Theorem 4.4
to generate a sequence of intervals ([an,b,])n>1 such that each [ay,, b,]

e contains infinite many of items in the sequence {z, }n>1;

29if A is not upper bounded, sup A := co as defined in Definition 1.1
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e both a,, and b, go to zy due to b, —a, — 0.

Since f(x) is continuous at zg, for € = 1, there exists a neighborhood
O(zo,d) such that |f(xz) — f(zo)| <1 or

If(x)] <|f(xo)]+1  for z in O(zo.9). (4.18)

ie. f(x) is bounded by |f(zo)| + 1 over O(xg,d). Which is contradictory
to the fact that there are infinite many points of z,, in O(z,d) and f(z)
over those points are not bounded due to Condition (4.17).

2. Since f(x) is bounded, | := inf{f(z), =z € [a,b]} exists. For each %, since
l is the greatest lower bound, we can find an x,, such that

L< flzn) < l+%. (4.19)

Apply the same strategy in the proof of Part I, we can identify xq €
[a, b] such that any neighborhood O(zy, d) of zy contains infinite many of
members of the set {x,,},>1. Note that f(xg) > [ since [ is a lower bound.
We claim that f(xg) = I. Otherwise f(zo) > I, let ¢¢ = ﬂ% > 0,
there exists a neighborhood O(zo, do) such that f(x)— f(zo) > —€o for all
x € O(zg, do), or

J(xo) +1

f(x) > f(zo) — €0 = 9

:l+60.

On the other hand, the set {z,,},>1 contains infinite many elements and
we can pick one x,, with large index n such that % < €p. By above inequity,

1
f(xn)>l+eo>l+ﬁ

which is contradictory to Eq 4.19.
3. Similar arguments in proving Part II can be applied to show Part III.
a

S: Seems that you play the same trick in above arguments: search a target
point by constructing a sequence of intervals such that the point is contained in
all of those intervals, the intervals eventually shrink to it.

T: Indeed. Once the point zq is identified, we can show that it is the desired
point by the continuity of f(x) at z¢. Combining Theorem 4.4 and Theorem
4.5, we have

Corollary 4.6. Let f(z) be continuous over [a,b]. Then

1. it reaches the maximum value M and the minimum value m, i.e. there
exists x1,%2 € [a,b] such that

f(zl):ma f(:EQ):M;

2. for any value ¢ € [m, M|, there exists xo € [a,b] such that f(xo) = c.
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We apply above corollary to show another important mean theorem as demon-
strated in Figure 17.

Theorem 4.7. (Mean Value Theorem of integrals) If f(x) is continuous over
[a,b], then there exists ¢ € [a,b] such that

b
/ F@)dz = F(e)(b— a) (4.20)

Proof. By Inequity 3.16, we know that

1
b—a

b
/ F(2)dz < F(Tma)

and by Corollary 4.6, there exists ¢ € [a, b] such that Equation (4.20) is satisfied.

F1G 17. Mean value theorem of integral for a continuous function f(xz) over [a,b]. There exists
¢ € [a, b] such that the area f(c)(b—a) of the rectangle is equal to the area of the shape bounded
by f(z) , z =a, x =b and z azis.

S: I did not expect such simple proof for a general function. It looks that f(c)
represents the mean value of the function over [a, b] as the name of the theorem
suggest.

T: Looks like you start to appreciate the beauty part of the calculus. It
provides the logic for what looks right mainly because we are able to
clarify what the continuity of a function is about. As you point out, f(c)
can be interpreted as the mean value of a function over the range [a,b]. Can
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you image how to average function value over an interval without calculus as
the tool?

S: Agree with you now that calculus is indeed a powerful tool to handle
functions.

imsart-generic ver. 2014/10/16 file: Dialogue_calculus_SSRN.tex date: July 3, 2021



