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1. Introduction to limit — the core concept in the infinite world

Teacher (T): Well, Calculus might be the most important subject in math. As
you might know, Newton is remembered as the most greatest scientist, but some
people believe that his most important achievement is on the calculus. British
people are quite proud for Newton’s achievement. But folks in the European
Continent are not quite happy with that and they claimed that German mathe-
matician Leibniz should take that credit and argued for a long time with British
people in history.

Student (S): I wish I were as enthusiastic like you on calculus. But can you
briefly explain what it is about.

T: Generally speaking, it is hard to summarize in one sentence what a math
subject is about, especially for beginners. Calculus is however special.

Statement 1.1. Calculus is all about limit, which bridges o finite world and
an infinite world.

S: You sound like a philosopher rather than a mathematician. Well, hope 1
would know my limit at the end. But how do you define the infinite world?

T: Let us walk in the finite world first, a green world that you should be
comfortable to deal with now. Let Ay = (a1, ag,...,an) denote a list of finite
many numbers. We can operate on the elements in Ay in some ways we are
familiar with. For examples, we can sum them up:

E ap:=a1+as+---+an.
1<n<N

We can also single out the maximum value of Ay. It might take us some time,
but we can always get an answer in the end. can’t we?

S: Well, at least I can compare each number with all others to identify the
maximum if I have enough time.

T: That is true. In the finite world, for a task like comparison, one can naively
exhaust all possible scenarios to find the answer, a task computers can handle
more efficiently than human beings. Now let us move to the infinite world, and
consider a sequence of numbers that never stops, denoted by

A= (an)nZI = (CLl,ClQ, ooy Qnyy ) (11)

For example, A stands for the list of all natural numbers if a,, = n, arranged in
increasing manner.

S: So what distinguishes the infinite world from the finite world has nothing
to do with magnitude of certain quantity. In the infinite world, we need operate
on infinite many of animals.

T: Be careful about the difference between two concepts: infinite many vs
“infinity”. The former should be clear in word itself, i.e. not finitely many. It is
not easy to explain the latter exactly at this moment. Intuitively, think about
what the following two sequences might represent?

(1,2,...,n,...), (12,2%,...,n2,...). (1.2)
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Both sequences “approaches” to certain kind of infinity, denoted by oo, although
the second one “goes” to oo faster than the first one. Notice that concept of
infinity does not refer to a single abstract quantity, but refer to certain kind
of sequences that can go beyond any specific boundary. We shall clarify what
it means exactly later. You make a good comment. In the infinite world, we
often need to deal with infinite many animals or, more accurately, end up in an
endless process, which distinguish from the finite world we are familiar with.

Let S to denote a general set of real numbers, including the case when its
elements can not be listed in a sequence such as the open interval S = (1,2) !.
Here comes the first basic concept in the infinite world.

Definition 1.1. 1. A number m is called as a lower bound of S if m <z
for ANY x € S 2. S is called lower bounded if such a lower bound exists;
2. A value M 1is called as a upper bound of S if M > x for ANY xz € S.
S is called upper bounded if such a upper bound exists;
3. S is called bounded if it is both lower bounded and upper bounded.

Remark 1. 1. Above lower bound m or upper bound M of S is not required
to be in S. For example, S = (1,2) is bounded with 0 and 3 as a lower
bound and upper bound respectively. 0 and 3 are not in S.

2. lower bound and upper bound are not unique. 1 and 2 are another lower
bound and upper bound for above S.

Notice that a finite set is always bounded, the minimum value is a lower
bound and the maximum value is a upper bound. As such, bound concept is
only needed when we deal with a set S with infinite many elements. It is easy
to see that both examples listed in Expression (1.2) are lower bounded, but not
upper bounded.

S: Looks like “any” in definition 1.1 is the key word to understand lower
bound and upper bound.

T: the logic of “any” need to be emphasized in several key concepts in calcu-
lus. Any idea if a number m is not a lower bound of S?

S: There should exist at least one number = € S such that x < m.

T: Great! let us write it down

Statement 1.2. If m is not a lower bound of a set S, there exist x € S such
that © < m. Similarly, if M is not a upper bound, there exist y € S such that
M <y.

As another example, let a,, = (1/2)™ in (1.1), we get a geometric sequence
G(1/2) == (1,1/2,(1/2)2,...,(1/2)" 1, ... (1.3)

Notice that G(1/2) is decreasing and hence the maximum value is a; = 1. what
can we say about the minimum value of the set G(1/2)?

ISee Section 0.2 for the conventions and notations. Notice that {1, 2} is used to denote the
set of two numbers 1 and 2.
2The expression x € S refers to “z in S”, see Section 0.2 for the conventions and notations
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S: Well, a,, = (1/2)™ gets close to 0 as n increases. So any positive number
can’t be treated as the minimum value, 0 and negative values are not in the
sequence. Seems that there is no minimum value for G(1/2), isn’t it?

T: Excellent analysis!

S: 0 is a low bound since all elements in G(1/2) are larger than 0. Of course,
any negative number is a low bound as well.

T: What makes 0 special is that it is the greatest lower bound of G(1/2).

S: I see. For any other larger number, it can not be treated as a lower bound
of G(1/2). is this the logic by saying “greatest lower bound”?

T: Exactly! we can transform the phrase to a mathematical description that
is quite helpful in future analysis:

Definition 1.2. Let S be a general set of numbers,

1. A number m is called the greatest lower bound of S if
e m <z forallxzinS3;

e For any positive number €, m + € is no longer a lower bound, i.e.
there exist xo € S 4 such that xo < m + €.

the greatest lower bound is denoted by inf S °, called the infimum of S
2. A number M is called the least upper bound of S

o x < M forall x in S;

e For any positive number ¢, M — € is no longer a upper bound, i.e.
there exist yo € S such that yo > M — €.

the least upper bound is denoted by sup S 6, called the supremum of S.

S: the logic sounds right to me. But how can you verify m + € is not lower
bound without knowing the value of €?

T: We need some algebra rather than depending on numerical comparison.
Take above G(1/2) as an example, 0 is clearly a lower bound since each element
a, = (1/2)"1 in G(1/2) is positive. To show 0 is the greatest lower bound,
for any given € > 0, we can certainly take a sufficient large N to make ay =
(1/2)N~! < € 50 that 0+ € = € is no longer a lower bound 7. Let us look at some
other examples.

Example 1. 1. S=(1,2). It is clear that inf S =1 and sup S = 2.
2.8 = (1,2,3,...) the set of all natural numbers. S is lower bounded with
inf S = 1 while it is not upper bounded and we write sup S = oo
S: What makes sup .S and inf S special?

3

i.e. m is a lower bounder

4We follow the convention that x,y,z are used to denote ANY element in a set, while
Z0, Y0, 20 are used to denote a selected number.

5We write inf S = —oo if it does not exist.

6We write sup S = oo if it does not exist.

"For example, try to verify N = max(2 — floor(log2(e€)), 1) works, where floor(z) is the
largest integer that is no larger than =
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T: They are quite helpful for us to understand the fundamental concept limit.
In fact, It turns out that they are exact the mysterious limit for a special type
of sequences defined as follows.

Definition 1.3. 1. A sequence A in (1.1) is called increasing (decreasing)
if an < apt1 (an > aps1) for any n > 1. A is called monotonic if it is
either increasing or decreasing.

2. The limit of a bounded increasing sequence A is defined to be sup A, de-
noted by
lim a,, := sup 4; (1.4)

n—oo
8. The limit of a bounded decreasing sequence A is defined to be inf A, denoted
by
lim a, :=inf A; (1.5)
n—oo

As you can see, for a monotonic sequence, the concept of limit is clear. One
can visualize that “ items in A approaches arbitrarily closely to the limit”.

S: The phrase like “arbitrarily close” sound ambiguous to me.

T: You are not alone. Mathematicians in early days also got confused with
such description. To clarify the ambiguity, let O(l,¢) = (I — ¢€,1 + €) denote the
neighborhood of [ with radius € > 0, which contains all numbers whose distances
to [ are less than e as shown in Figure 1.

Olle)

&

Fic 1. The neighborhood O(l,¢) contains all numbers whose distances to l are less than ¢

Let [ = inf A for a bounded decreasing sequence A. For any prescribed
€ > 0, since [ is the greatest lower bound, [ + € is no longer a lower bound, which
implies that there exists ay in A such that ay < [+ €. Note that [ < ay since [
is lower bound, and therefore ay is in (1,1 + €) C O(l,€). Since the sequence is
decreasing, all terms after ay is more closer to I than ax and fall in the (I,1+¢€)
as shown in Figure 2, i.e.

lan, — 1] <, for ALL n > N (1.6)

S: Got it. items in A approach arbitrarily close to [ simply because € can
be a arbitrarily small.

T: Exactly. let me emphasize that ¢ caps the distances to [ for all terms
following a . Pay attention to the key word “all”. In another word, the distance
threshold e is applied to all items in the sequence except some finite many items
in front of the sequence.
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Ay Ay | dyn_1

I=inf(A) [+e€

Fic 2. The limit of a bounded decreasing sequence A is equal to | = inf A. The quality € is
labeled as e in the graph.

S: Let me confirm my understand. By saying “items in A approach arbitrar-
ily close to [”, it doesn’t mean that certain fixed terms in the sequence are
arbitrarily close to [. It actually means that, for any given threshold € > 0, all
items except some finite many are close to [ within the threshold e. “ arbitrarily
close” is due to the fact that € can be any small number without any restriction.

T: Exactly. It is equivalently to say that, for any € > 0, there exists an item
ay such that all following items {a,;n > N} are close to [ within the threshold
€, i.e. |a, — ] < €,¥n > N. The idea can be used to describe the limit of a
general sequence as follows

Definition 1.4. A sequence A in 1.1 is called to converge to | if for any given
€ > 0, there exists N such that

lan — 1] < e, VYn > N. (1.7)
In this case, we write
lim a, =1 or an — 1 (1.8)
n—oo

and l is called the limit of the sequence.

Remark 2. The concept of the limit of a sequence is one of two fundamental
concepts in calculus! We shall touch the other kind limit about function later.

Let us look some examples.

Example 2. 1. lim, o n"T_QH = 1. It is increasing with sup A =1
2. lim,, n2++1>n = 0. It is neither increasing nor decreasing. For any
e > 0, we need find required ap. Since 0 < a, < %, to make |a, — 0] < ¢,
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we only need % < €. If we choose N be any integer that is larger than %,

then
< i <€
N

S|

lan, — 1| = a, <

foralln > N.

3. limy, o0 (1 + (—=1)™) does not exist. Intuitively, the sequence does not ap-
proach to a given value since a, s alternating between 0 and 2. one can
also argue vigorously that the sequence can not converge to any given num-
ber l. In fact, for anyl, we have

2=lan — an1] =[(an — 1) + (I = ans1)| < lan — U +|an41 — 1|

as such, |an, — 1| and |an11 — 1| can not be smaller than § simultaneously
for any n. So for e = %, there is no N that meets the condition (1.7).

S: What can we do with limit? how does it bridge the finite world to the
infinite world?

T: Let us start with the task to add all terms in A by Definition (1.1). It
becomes actually quite trivial once we have the limit as a tool.

Definition 1.5. Let S,, = >, ,., a; be the sum of the first n terms in A. If
S, converges to certain value S, then the sequence is called summable and S is
defined as the sum of the sequence A. We write

E a;:=S5= lim §, (1.9)
n—oo
1<i<oco

Basically, we use the partial sum S, as an estimation and the limit of the
estimation process is equal to the exact value of the summation if the limit does
exit ®. As an example, consider a general geometric sequence

G(x):= (1,z,2* ..., 2" 1 ). (1.10)
we can add first n terms and get the partial sum
1 _ n
Sp=0+z+a?+-- 2" )= . T
—x

For 0 < x < 1, it is not hard to show S, is increasing and converges to its

1.9 ;
supreme 1— 7, i.e.

1
d>ooant= , 0<z<1 (1.11)
1—=z
1<n<oo
S: To add infinite many items, we start working in the finite world by adding
finite terms to get S,,, then take the limit of the sequence (S7,Ss, - ,Sp, )
to get the sum of the sequence. Looks that limit indeed plays a bridge rule here.

T: Indeed! In general,

81t is quite possible that the limit does not exist and hence the sequence is not summable.
For example, let ap = (—1)" and Sy is switching between 0 and -1, and hence does not
converge.

9y proving limn 00 ™ =0 for 0 < z < 1.
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Statement 1.3. If a direct solution for a task is not available, we often start
with certain estimation process to estimate the target value and expect that the
limit of the estimation process is the target value.

S: But why bother to add infinite many terms?

T: It is one of basic operation for us to explore in the infinite world and is
essential for both theoretic development and real world applications. But let
us roam in the ancient Greek imaginary world for a while and think about the
following famous paradox by the Greek philosopher Zeno nearly 2500 thousand
years ago V.

Discussion Question 1.1. Zeno’s Paradox Achilles (A), the fleet-footed hero
of the Trojan War, is engaged in a race with a tortoise (T'), which has been
granted a head start. He shall never capture the tortoise since each time he
reaches to the previous position of the tortoise, the tortoise has moved forward
to a new position ahead of him as shown in Figure 3, where Achilles and the
tortoise start at two positions Ag and Ty respectively and the tortoise moves
ahead to T; when Achilles catches up to A; =T;_1 for eachi=1,2,3,....

TO T (T3
. 0

& & *+—8

Al A2 A3

Fi1G 3. Zeno’s Paradox: The race between Achilles and a slow tortoise

S: It is absurd and yet sounds logical.

T: It is a paradox, isn’t it? You have to admire ancient Greeks for their
passions and curiosities in seeking the knowledge. To get some insights, let us
be more quantitative and assume that A runs and 7" moves at speed v4 = 10m/s
and vr = 1m/s ! respectively and T has a head start of 100m. Now assume
that A spends t; seconds to move from A; to A;11 fori=0,1,2,3,.... It is clear

100
==

to 10

During the period [0,tg], T moves ahead by the distance s; = tg x vy. To
cover the distance si, A needs t; = j—; = to(f}—i) seconds to reach A;. But in
this period (¢; seconds), T further moves forward by ¢; X vy meters. In the next

10See Zeno’s book “Achilles and the Tortoise”
HLet us assume that the tortoise moves really fast to make calculation easy.
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t1 Xvr
vA

step, A needs to = = to(Z—i)Q seconds to reach the position As. In general,

A needs s; = tO(Z_Z)i seconds to reach A; from A;_;.

S: I see your points. But I rather directly calculate the total time that A needs
to catch up the tortoise by simple algebra. Say A catches T after ¢ seconds .
Since A moves extra 100 meters than T, we have the equation

txvyg=txvpr+100

and solve it for ¢
t =100/(va — vr) = 100/9.

T: Excellent. We know now that A should catch T in exactly 100/9 second.
But remember that we have paradox to address. Do you have a way to find the
total time following Zeno’s argument?

S: By adding 11, t2,...7

T: Right. We need add all those t; to get the total time. Zeno’s argument
implicitly implies that adding infinite many of numbers should always lead to
some sort of infinity. We now know how to add a geometric sequence in Equation
1.11 and find the total time T

T = lim T, = lim 10(1+:—:+~-~+(”—T)”—1):10>< L _ 19

n—00 n—oo VA 1— % 9

which is consistent to what you covered using simple algebra.

S: Woo! The phase “never capture” in the paradox is misleading because the
total time A spends in the process is not infinity although Achilles’s catch-up
process goes on forever.

T: Right. mathematically, we can add infinite many of numbers and end up
with a finite value if the sequence is summable as demonstrated here.

Now let us back to the real world. For a computer to handle arithmetic
operations, numbers need to be expressed in decimal expression (or similar like
binary format). For all irrational numbers, simple as V/2, there are no pattern
in their decimal expression. To approximate them with desired accuracy, we
like to express a target number as the summation of a sequence of numbers so
computer can effectively carry out the estimation. As a typical example, the

well-known 7 can be expressed in following ways '2
™ 1 1 1 1 - 1
BRI e 1) . 1.12
4 3+5 7+9jL 7;0( )2n+1 ( )

If we use the sum .S, of the first n term as approximation of 7/4, one can show

12First discovered by Leibniz
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13
1

2n+1
As such, we can not only estimate 7 by 4.5,,, but also know that the error is not

T
- -5,
|4 | <

bigger than 2n4+1. If you want to estimate 7 with tolerate error 1073, we need
2n4+1 < ﬁ, or roughly n > 2 x 10 = 2000. You are encouraged to search the

latest development online to find some amazing algorithm to estimate 7. The
idea is the same: express 7 in term of a summation of series and use the partial
summation of first n terms as approximation.

S: So we end with an irrational number by adding infinite many rational
numbers. I remember that we can only get a rational number by adding finite
many rational numbers.

T: The expression (1.12) of 7 shows that you might get an apple by adding
infinite many of oranges. But what might surprise you more occurs when we try
to express sophisticated functions in the summation of simple power functions
as we did in Equation (1.11) where the function 1= (z € (0,1)) is expressed
as a summation of infinite many of power functions. We are going to show in
Section 7 that, under certain conditions, this can be done for a general function
f(z), i.e. there exists ag, a1, .. such that

fx)=ap+ a1z +ax® 4+ +az" +... (1.13)
For examples ™,
. 1 1 1
sin(z) = i §x3 + ax5 ﬁaﬂ , TER (1.14)
1 1 1
cos(z) = 1—5;1024—1:104—&906..., r€R (1.15)

S: Interesting. I do not know much about the two trigonometric functions
except they are periodic and bounded by 1. It is hard for me to associate them
with power functions.

T: It is actually quite easy to derive Eq (1.14) and (1.15) once we develop
certain tools. We will see more magics in our future exploration in the infinite
world. We have made the first step in the journey although we still have a long

13

1 1 1 1

12— Sul = | + 4o
4 "™ 7 "op41 2m+3 2n+5 2m+7
1 1 1 1
- |(2n+1_2n+3)+(2n+5_2n+7)_'“|
1 1 1 1
= )+ ( )=

on+5 2n+7
B 1 ( 1 1 - 1 1
- 2n+3 2n+5 2n+7 2n+9

m+1l 2n+3

n+1 )=

1
2n+1

Msin(z) or cos(z) will be defined and studied in later chapters.
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way to go. Let me finish this section with what need to be done in future. We
need

Task 1.1. 1. develop the tools to justify whether a sequence converges rather

than just depending on checking by definition;

2. develop the tools to find the limit value of a general sequence if it exists;

3. estimate the limit of a sequence if there is no chance to find the exact value
and handle the estimation error effectively.

4. know how to represent a sophisticated function by simple functions as in
1.18 so that we can handle them effectively if we can deal with those build-
ing blocks of functions.
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