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3. The concept of integral and the fundamental theorem

T: As we did before, let me to start with a problem. It is more challenge than
the one we discussed about slope and helpfully is more interesting.

Discussion Question 3.1. Find the area bounded by x axis, v = 4 and y = x>

as shown in Figure 10.

o

FIG 10. The area bounded by y = 2%,y =0,z =0,z =4

S: I have to admit that I can only work on a shape with straight boundaries,
basically polygons. Do we actually have a formula for that shape. Should we
start with some sort of approximation like we did with the slope. But seems to
me that there is no straightforward method even for approximation.

T: It is indeed less obvious on how to do approximation, which need to be
done in a way that we are able to control the approximation error. One way is
to slice the shape into n parts, as shown in Figure 12, whose areas are denoted
by s1,82,...,8n, by n+ 1 vertical lines

4
_TL

T =z, 1=0,1,...,n.
The area S of the shape is the summation of the areas of the small pieces of the
partition:

S=s51+8+ -+s,

S: Each of piece looks more or less like trapezoid. Should we estimate s; by
the area of the associated trapezoid?

T: Quite natural idea, isn’t it? As we refine the partition of the shape by
increasing n, each small part will be more like trapezoid, and the estimation
by the areas of those trapezoids indeed should work. I have some other reasons
to use rectangles as shown in Figure 12. Let us estimate a; by the area of
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Fic 12. Estimate the area of small pieces by rectangles-I

the associated rectangle. Notice that the dimension for the ¢ — th rectangle
(i=1,2,..n) is

4% — 1)

4
base = x; — T;_1 = e height = f(z;_1) =z, = (

)2.
So the area of ¢ — th rectangle is

43
a; = f(il),_l)(.%‘, — LZIi_l) = F X (Z — ].)2.

Adding them to get the estimation of the area of the whole shape

3
S = Z f(xi—l)(xi —LZIi_l) = % X Z (Z — 1)2

1<i<n 1<i<n
43 43 43
= —_— — _— = A .].
3 20 on2 " 31
For the last step, I use an algebraic identity for any integer m
3 2
. m m m
Z ZZ:?+7+€ (3.2)
1<i<m
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S: The estimation is much more complicated than what we did on slope. We
directly estimate the slope by a single quantity. Here we have to divide the area
into small pieces and estimate each individual. The results can then be used to
get an estimation of full area.

T: Exactly. It is part of reason that I prefer to estimate by using rectangles
rather than trapezoid. The calculation is already hard for using rectangles and
using trapezoid will add extra complexity. what can we say about A4, in (3.1)
if n becomes very large?

S: It should approach to % as the other two terms in the definition (3.1) of
A decreases to 0.

, T: Right! notice that A,, is increasing and therefore indeed takes its supreme
"

5 as the limit:

3 3 3 3
lim A4, = lim (4— 4 1 )= % (3.3)

n—00 n—oo 3 2n 6n2

S: Are you saying that S is equal to %? It is still not clear to me why .S has

to be exactly equal to 43—3. We add many terms and each term has an estimation
error. How can we measure the overall impact of the estimation error?

T: Your concern is legitimate. Do you agree that at least S > A,, for ANY n
and therefore S is a upper bound for the sequence (4,),>1 and

43
S > 7 (3.4)
S: That is clear to me since each s; > a;.

T: OK. As we did on slope problem, we now estimate the area from the other
direction. Instead using small rectangle, let’s pick up larger rectangles as shown
in Figure 13

S: So we can show S < 43—3 and then conclude that S has to be equal to 43—3?

T: Exactly. We play the same sandwich trick as we did with slope. The
dimension for the i — th rectangle (i = 1,2, ..n) changes to

43
n

2.

4
base = x; —x;_ 1 = —, height = f(x;) = 1712 =
n

So the area of i — th rectangle is

422 P
bi:—X—2:—3XZ.
n n n

Adding them to get the estimation of the area of the whole shape

43 43 43 43
S~ — X 2= — 4+ _—+— =:B,.
n3 - ! 3  2n  6n?2 "
1<i<n
It is clear that S < B,, since s; < b; for all i and therefore S is a lower bound
for the sequence (By,)n>1. It is easy to see that B,, is decreasing and converges
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20

Approxin‘"&ate the area bounded by y=x"2

F1c 13. Estimate the area of small pieces by rectangles-II

. _43.
to inf B = 5

. 43
nh_)rr;o B, = 3 (3.5)
which implies
43
S < 3 (3.6)

Combining with (3.4), we obtain S = g.

S: Cool! So both approximation methods work. I mean we can use small
rectangles and large rectangles to approximate, they all approach to the final
value S = %.

T: Right. The approximation method is not unique, but they end up with
same limit. Let’s rewrite two approximation summations as follows with f(z) =

22, denote Ax; := x; — i1,

An = > flwia)Ax, (3.7)
1<i<n

B, = Y flm)Aw, (38)
1<i<n

We have show that A, and B, both approach to the area S as n increases.
Notice that x;_;1 and z; are two end point of the interval [x;_1,z;]. If we select
another point ¢é; over the interval [z;_1, x;], using the rectangle with height f(c;)
to estimate the area s; of the associated small piece as shown in Figure 14, then
we get another approximation:

Dpi= Y flei)Az; (3.9)

1<i<n
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Fic 14. Estimate the area of small pieces by rectangles-111

Does D,, approach to S as n increases too?

S: Why not?! It is clear that f(c;) is between f(x;—1) and f(x;), so D, is
between A,, and B,. If both A,, and B,, approach to S, D,, should also approach
to S.

T: Excellent! Now you can see the reason why I choose rectangles, rather than
trapezoids, to estimate S. By using rectangles, I have two special methods, one
takes the lowest height and the other take highest height, they both converge
to the desired value S. Since f(z;—1) is the minimum value and f(x;) is the
maximum value over [z;_1,2;], A, is called a lower Darboux sum. and B, is
called a upper Darboux sum.

S: So there is no difference at all? Intuitively, I do feel that trapezoid method
is better.

T: There is no difference after we take limit, i.e. they all approach to S. But
trapezoid method goes much faster to real value and a computer will certainly
sense the difference 2!. It is quite surprising that the same argument works in
a general setting where the upper boundary of the area is given by a general
function y = f(x) as shown in Figurehave 15.

To extend lower Darboux sum and upper Darboux sum to a general function
f(z) over [a,b], we assume it meet the following requirement:

Assumption 3.1. f(z) has the mazimum value and minimum value on any
sub interval [, B] C [a, b], i.e. there exist ¢ and d in [o, §] such that

fle) < f(z) < f(d), Vzelaf]

Remark 7. A general function f(x) might not be able to reach its mazimum or
mintmum as shown in Example 2.2 where it dose not have the mazimum value

21 A5 an exercise, you can actually calculated the values for first 10 items of A, Dy, C),
and compare how close they are to S.
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over [—2,4)*2. We shall show that so called “continuous” function always meets
above assumption in Theorem 4.5.

Follow the idea in above example, [a,b] is divided into n sub intervals by
points

. a .
T, =a+1 , t=0,1,...,n
n

and Ax; = x; — x;—1 for 1 < i < n. We can make the lower Darboux sum and
the upper Darboux sum similarly as in (3.7) and (3.8) 2.

An = > fle)Aa, (3.10)
1<i<n

B, = Y f(d)Aux;, (3.11)
1<i<n

where f(z) reaches the minimum value and the maximum value at ¢; and d;
respectively over the interval [z;_1, ;] for i =1,...,n.

Definition 3.1. Let f satisfy the condition in Assumption 3.1. If both lim,,_, . A,
and lim,, ... By, erist and are equal, then the common limit is called the integral

of f(x) over [a,b] and denoted by:

b
/ f(z)dr := lim A, = lim B, (3.12)

n—oo n—r oo

The f(x) is called as the integrand of the integral.

The result of the area example can be expressed as

4 43
/ r?de = — (3.13)
0 3

S: So the integral is just the area of the shape?

T: Yes if f(x) > 0 and it represents the upper boundary of the shape as we
discussed before, see Figure 15. But integral can represent many other quantities.
What 2, -, f(ci)Az; represents if z represents time and f(z) represent the
velocity someone travels along a straight line at time x?

S: Each f(c;)Ax; approximates the distance traveled during the time period
[i—1, xi]247 the sum estimates the total distance traveled over the time period
[a, b]. looks that the integral represents the exact distance traveled.

T: Exactly. Recall that we can get instantaneous velocity function from a
distance function by calculating derivative. Using integral, we can derive the

22The supremum of f is 4, which is not reached by function at any point = € [—2,4] and
therefore can not be treated as the maximum value.

23The partition of the interval [a, b] do not need to be evenly divided by above z;, but can
be defined in a more general setting.

24 Although the speed is not constant over [z;_1,;], the instantaneous speed f(c;) is used
as approximation for the speed over that time period.
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Fi1G 15. Integral for a general function f(x) over the interval [a,b]

distance function by instantaneous velocity function. At this moment, you can
simply consider the integral as the area under the curve for a intuitive under-
standing. Here are a few obvious properties when we interpret integral as areas.

1. If f(x) = C is a constant function, then

/ F@)dz = C x (b—a) (3.14)

which is consistent to what we expect for the area of a rectangle.
2. If f(x) < g(z) over [a,b], then

/ " fa)dr < / ' o) (3.15)
In particular, if m < f(z) < M, then
m(b—a) < /bf(:z:)dx <M(b—a) (3.16)
3. For a < ¢ < b, we have

/ab f(x)dz = /ac f(x)dx + /cb f(z)dz (3.17)

S: For a simple function f(z) = 2, it takes us quite lot of effort to get
the solution (3.13). I wonder how much we can do for the integral with more
complicated integrand f(z).
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T: It would be very challenging if we have to go through the whole estimation
process as we did for f(z) = 22 over [0,4]. Fortunately, we have so-called the
fundamental theorem, that provides an effective way to calculate a integral if the
integrand f(x) is “continuous”. We are going to investigate continuous function
in Section 4 and show that

Theorem 3.2. The integral of continuous function f(x) exits. More specifically,
if f(x) is continuous over [a,b], then f meets the condition in Assumption 3.1,
and the lower Darboux sum and upper Darboux sum converges to the same limit,
which is denoted by f: f(x)dx.

We have

Theorem 3.3. The Fundamental Theorem. For a continuous function f(x)
over [a,b], if there exists another function, denoted by F(x), such that F'(x) =
f(x), then

b
/ F@)dz = F(b) — F(a) (3.18)

Remark 8. Since f(z) is the derivative function of F(x), F(x) is usually called
an anti-derivative of f(x). Notice that if F(x) is an anti-derivative, so is
F(z) + C. As such, Anti-derivative is unique up to a constant by theorem 2.8

(4)-

S: So the question is how to find anti-derivative function.
T: Like in dealing with derivative, we need

Task 3.1. Dewvelop tools to calculate anti-derivative functions for general func-
tions.

Let us now focus on the polynomial f(z) defined in 2.3. First of all, any idea
for the anti-derivative for f(x) = 227

S: So we need F'(z) = z?. We know that (z3)" = 3z% which is close to
22 except an constant 3. If assuming F(z) = cx® with some constant ¢, then
2? = F'(x) = 3cz?, s0o ¢ = 3 and F(z) = 322

T: If applying the fundamental theorem, we have

4
/ ridr = 143—103 :1
0 3 3 3

and recover the value that take us a lot of efforts to get!

S: I start to sense how powerful calculus can be.

T: It is just a start. Your arguments apply for f(z) = 2™ to find F(z) =
n+r13:"+1. Notice that if F(x) and G(x) are anti-derivatives for f(z) and g(z),
then aF(x) + bG(g) is the anti-derivative for af(z) + bg(x). Therefore, we can
find an anti-derivative for the polynomial f(z).

43

2
n a1z
F(.’L’) = n—_H(E +1 + -+ 12 —+ apx (319)
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S: That is really amazing. it means that we can find the area bounded by
any polynomial.

T: Calculus actually can calculate areas and volumes of geometric objects
bounded by much more sophisticated boundaries.

S: It is like playing a magic with the fundamental theorem and I am curious
why it is true.

T: It is not easy, but we are not far away from prove it. Let us stop here since
we already cover enough in this section.

imsart-generic ver. 2014/10/16 file: Dialogue_calculus_SSRN.tex date: July 3, 2021



